
Do donuts grow on trees?

Delivering the circular bioeconomy for low-emissions development

Christopher Martius, Vincent Gitz, Alexandre Meybeck CIFOR Bonn, Germany c.martius@cgiar.org 25 June 2020

search ogram on rests, Trees and groforestry

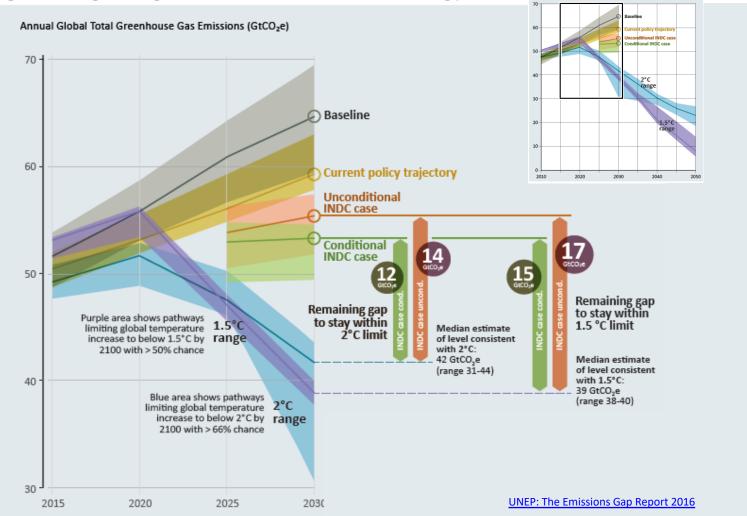
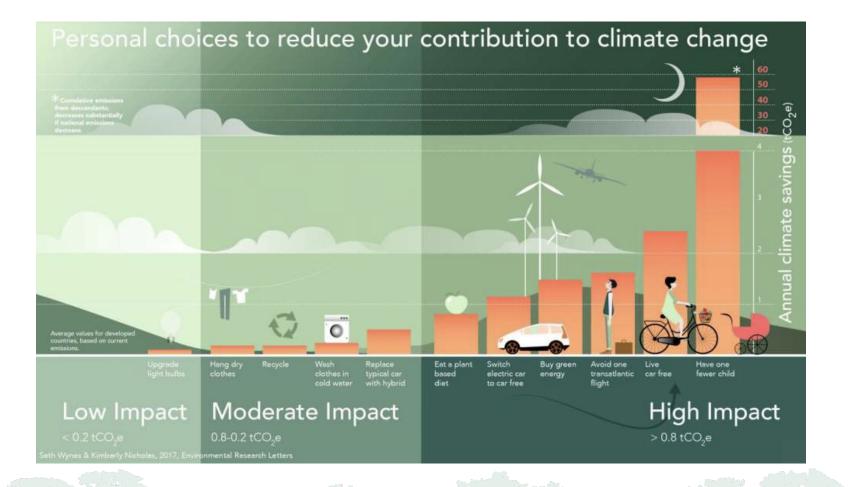
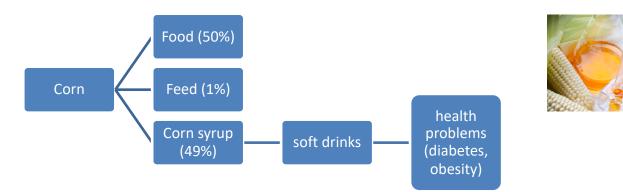



Figure ES2: Global greenhouse gas emissions under different scenarios and the emissions gap in 2030.

Voluntary lifestyle changes?



Emission avoidance Questioning production objectives

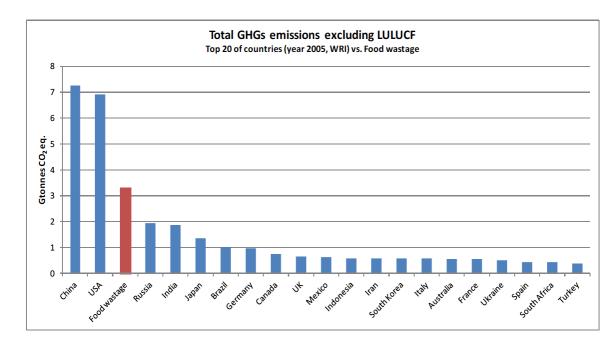
e.g. high-input, high-productivity corn production (USA)

→ Cheap food has very expensive consequences (health crisis, environmental crisis, climate change)

• This is not food security

Alexander Müller, IKI workshop on NDCs; November 2017, Bonn

Emission avoidance Managing "A country called food waste"

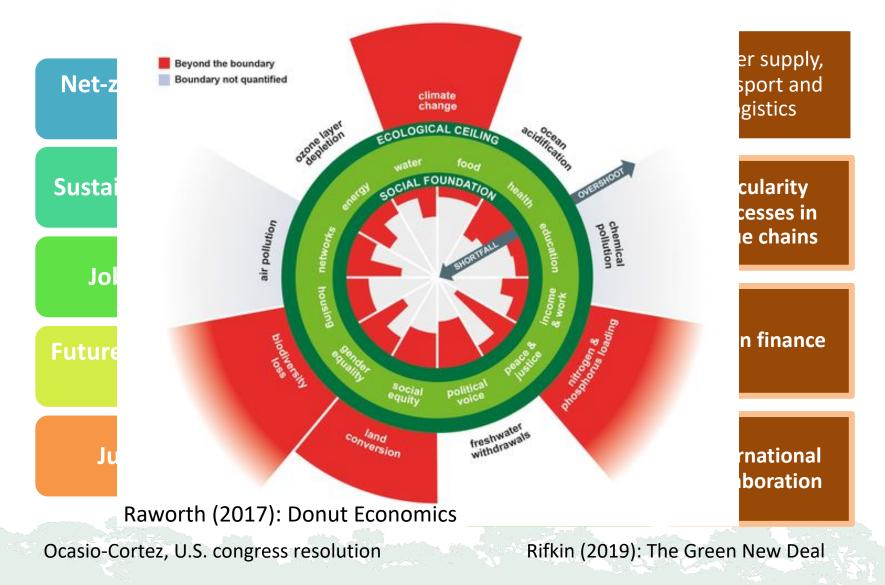


Alexander Müller, IKI workshop on NDCs; November 2017, Bonn

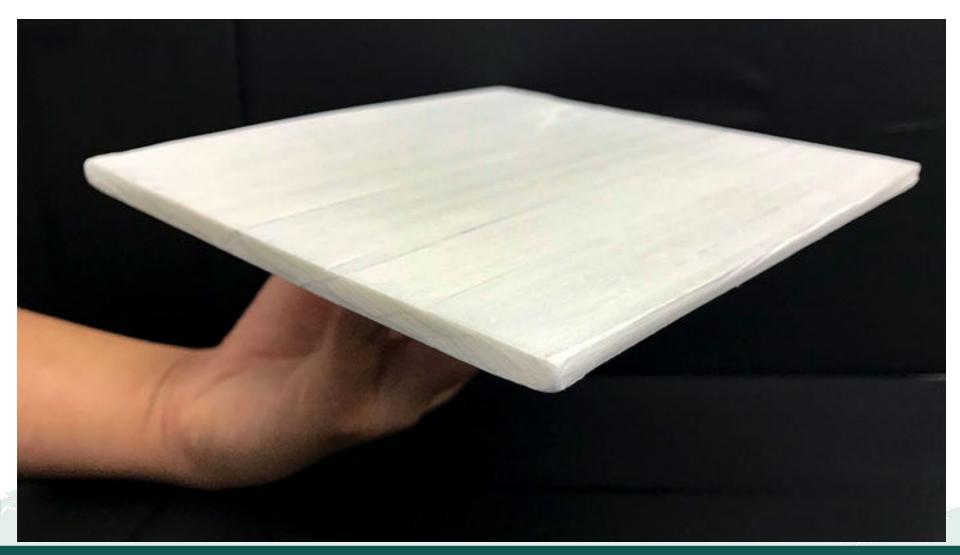
https://en.wikipedia.org/wiki/Food_waste

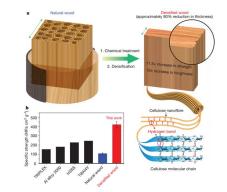
Carbon footprint of food waste up to 3.3 Gt CO₂

If food wastage was a country, it would rank as the 3rd top emitter.


Source for blue bars: WRI, 2012. Climate Analysis Indicators Tool. Available at: http://cait.wri.org.

18


Green New Deal


"SUPER-WOOD" New wood building and processing technologies

"SUPER-WOOD" New wood building and processing technologies

New wood technologies grow sinks and reduce emissions from timber harvesting, cement etc.

Timber towers

• <u>https://www.azuremagazine.com/article/plyscrapers-timber-towers-green-skyscrapers/</u>

CIFOR

Anually, every person on the planet uses 0.5 cubic meters of wood

- Future trends?
 - Consumer decisions & expectations
 - Society demands /industry needs
- Decisions?
 - How to integrate with restoration and C farming?
 - Where to source the wood needed for the bioeconomy?
 - Should we grow more or less biofuel?
 - Or use wood to build post-harvest carbon sinks?
 - Efficient resource use through more Integrated value chains, e.g. postharvest biomass management?

Figure ES2: Global greenhouse gas emissions under different scenarios and the emissions gap in 2030.

Annual Global Total Greenhouse Gas Emissions (GtCO2e)

70 -

Summary: the possible impact of GC6 actions

Overall ag emissions	=24.0% of all emissions	0.24 x 55 Gt/a	13.2 Gt/a
Reduce non-nutritive food production by 1/3 (30% of ag emissions globally?)			
0.3 x (0.3 x 0.24)	=2.2% of all emissions	0.3 x (0.3 x 13.2)	1.3 Gt/a
Halve post-harvest waste loss (40% of all ag emissions globally)			
0.5 x (0.4 x 0.24)	=4.8% of all emissions	0.5 x (0.4 x 13.2)	2.6 Gt/a
New wood technologies (grow a sink and reduce emissions from timber harvesting, cement etc.)			
?	1% of all emissions	0.1 x 55 Gt/a	5.5
Total reduction	8%		9.4 Gt/a
			5.4 Gt/d
40 - Blu limit in	And obvious adaptatio e area shows pathways sing global temperature crease to below 2°C by 100 with > 66% chance	(range 31-44) on benefits, too!	of level consistent with 1.5°C: 39 GtCO ₂ e (range 38-40)

Delivering the circular bio-economy for low emissions development New work under "2-degree" grand initiative

Going green

Developing new biomaterials from forests, plantations and agriculture

Choosing goals

Global societal debates and decisions on diets, products, land use, and emissions

Weaving it together

Advising businesses and developing coordination, integration and efficiency across value webs

Why Periurban context?

- Embodies many of the problems and pressures: food production, energy, pollution, waste
- Ideal for advanced thinking
- City mayors advanced and well organized (ICLEI, C40, URBAL)
- Novel sources of funding?

What are we doing already?

- Bamboo value chains, cultivation, training materials (Ethiopia, India, Ghana etc.) (INBAR)
- Growing bioenergy on marginal lands (CIFOR): species, markets, private sector
- Furniture value chains (Ethiopia, Indonesia) efficiency, certification (CIFOR)
- Nutrition
 - Forests, food security, and nutrition in the Congo Basin / Wild Food Statistics in Zambia / Mangroves and fish consumption in Indonesia
- Restoration: Humid and dry forests, bamboo, zai method
- Jurisdictional approaches
- Impact assessment

Where and how does rubber come in?

- Sustainable bio-production
- Improved value chains

Please write me: <u>c.martius@cgiar.org</u>

cifor.org forestsnews.cifor.org ForestsTreesAgroforestry.org

RESEARCH PROGRAM ON Forests, Trees and Agroforestry

(Picture sources)

- Donut economy /planetary boundaries: <u>https://i.guim.co.uk/img/media/d75c8810902aa7813549c89685183d76ecd6a9e1/17_27_23</u> <u>60_1949/master/2360.jpg?width=620&quality=45&auto=format&fit=max&dpr=2&s=878250</u> 7f6c1394de6b5b41e24fea2fd8
- Reflecting wood: <u>https://www.sciencemag.org/news/2019/05/engineered-wood-radiates-heat-space-potentially-slashing-cooling-costs</u>
- Cubic meter of wood: <u>https://i.pinimg.com/originals/d3/cc/49/d3cc491abbbfdd9d6c0f1f12fc9af028.jpg</u>
- Wooden buildings: <u>https://www.azuremagazine.com/wp-content/uploads/2018/03/wood-</u> towers-were-watching-gif.gif
- Circular economy: <u>https://wearepath.com/wp-content/uploads/2019/02/circular-economy-eu-commission-472x316.png</u>
- Value web: <u>https://www.biomassnet.org/wp-content/uploads/2017/02/valuewebapproach-</u> <u>700x487.png</u>

